Solving LASSO Problem for Sparse Encoding in
Asynchronous Spiking Neural Networks

Alex Roseman
Department of Physics
Yale University
New Haven, CT
alex.roseman@yale.edu

Abrar Sheikh

Department of Electrical Engineering
Yale University
New Haven, CT
abrar.sheikh@yale.edu

Abstract—In this paper, we present the design and partial
implementation of an asynchronous spiking neural network
(SNN) to solve the Constrained LASSO (C-LASSO) sparse
encoding problem. The architecture would have been realized
using a TSMC 180nm process and a central control unit that
communicates with neurons through input and output channels.
We implemented the spiking Locally Competitive Algorithm (S-
LCA) to achieve sparse coding and validated the design at
multiple levels.

Testing demonstrated correct behavior at the CHP and de-
composition levels, where spike outputs matched theoretical
expectations. However, when mapping the design to production
rules, discrepancies arose after initial outputs, prompting further
debugging. To address these issues, we explored modifications, in-
cluding an offset-based CHP implementation to prevent negative
values and a dataflow-based re-implementation. Despite ongoing
challenges, the project establishes a robust foundation for solv-
ing sparse optimization problems efficiently with asynchronous
SNNs.

Index Terms—Spiking Neural Networks, Locally Competitive
Algorithm, /;-minimizing sparse coding problem

I. INTRODUCTION

Sparse coding is a fundamental optimization problem where
a signal x € R” is represented as a linear combination of
sparse dictionary elements from an overcomplete basis ¢ €
R™*™ with m > n. This is formulated mathematically as the
Least Absolute Shrinkage and Selection Operator (LASSO)
problem:

1
minimize §\|w—@aH§+)\HaH17 ey

where o« € R™ is the coefficient vector, and A > 0 is
a regularization parameter balancing reconstruction accuracy
and sparsity. In applications such as feature selection and
signal processing, constraints can be added to enforce non-
negativity on the coefficients «. This leads to the Constrained
LASSO (C-LASSO) problem [4]:

Kenan Erol
Department of EECS
Yale University
New Haven, CT
kenan.erol@yale.edu

Eytan Israel
Department of EECS
Yale University
New Haven, CT
eytan.israel @yale.edu

Siva Nalabothu
Department of Computer Science
Yale University
New Haven, CT
siva.nalabothu @yale.edu

Luis Zuiiiga Veldsquez
Department of Chemical Engineering
Yale University
New Haven, CT
luis.zuniga@yale.edu

1
minimize |z — ®alj3 + ||| 2
a>0 2

A. The Locally Competitive Algorithm (LCA)

The LASSO problem can be mapped to the Locally Compet-
itive Algorithm (LCA), which computes sparse representations
using a network of competing neurons. This algorithm has
been extended for implementation on neuromorphic hardware,
where local competition enforces sparsity efficiently [2], [4].
The LCA dynamics are described as follows:

dui
dt

=bi—ui— Yy wia;, ai=T(w), 3
j#i

where:

e u; is the membrane potential of neuron i,

e b; = ®I'z represents the feedforward input,

o wj; = ®I'®, defines the inhibitory weights between
neurons,

¢ a; is the output activity governed by the soft-thresholding

operator T).

For the C-LASSO problem, the soft-thresholding operator
T, is further restricted to enforce non-negativity by setting
Ty (u) = max(0,u — \) [4].

B. Spiking Neural Network Implementation

The LCA can be implemented using Spiking Neural Net-
works (SNNs), which leverage discrete spike events instead of
continuous values to communicate information. This approach
gives rise to the Spiking Locally Competitive Algorithm (S-
LCA), which efficiently solves the C-LASSO problem in an
energy-efficient manner [1]. In SNNs, neurons operate using
the leaky integrate-and-fire (LIF) model [3], with dynamics
governed by:

dpi
dfl; =b; —pi — Zwijaj(t), “)

using IRSIM and Xyce, the next step would be synthesizing
the design into standard cells using the TSMC 180nm process.

II. ARCHITECTURE

To implement the required equations in a circuit-friendly

t
vi(t) = /0 (is) = A)ds, vi(t) = Vin = as(t) = 1 (Spike&/ay with minimal multiply and divide operations, we modified

)
a;(t) =1 = vi(t) < 05 pj(t) < p;(t) — wijo(t — topike)s

(6)
pi(t = 0) = by, (7
vi(t =0) =0, (®)

where:

e (; is the soma current of neuron ¢,

e v; is the membrane potential, which integrates input

current over time,

e s the bias current,

e w;; defines the inhibitory weights,

o a;(t) represents the spike trains of neuron j,

e at) = et fort > 0 and O otherwise, controlling the

spike decay,

o V4 is the firing threshold.

To digitalize the problem, we make several changes to
the continuous equations above. First, we discretize time in
units of time constant 7 [5]. v and p no longer represent
physical voltages and currents, but are state-holding variables
that update their internal variables every timestep. When a
spike happens at step ¢, the neurons have just finished their
calculations for v(¢) . They must incorporate the spike into
their calculation for ;(t) because there is no held state across
timesteps except for v and p. It should also be noted that p is
computed after checking for a spike. So () and v(t) evolve
according to the following equations:

vi(t +1) = vi(t) + 7(i — A),)
vi(t) > Vin = a;(t) =1, (10)

pi(t +1) = pi(t) + 7(bi — pa(t)) — Zwijaj(t +1) (11)
j#i

When a neuron spikes, its potential resets, and it sends

inhibitory signals to competing neurons, enforcing sparsity.

Over time, the spike rates of the neurons converge to the
solution of the C-LASSO problem.

C. Our Implementation

In this project, we worked towards implementing a solution
to the C-LASSO problem using the Spiking Locally Compet-
itive Algorithm (S-LCA) on an asynchronous chip. Building
upon the S-LCA framework, we designed the structure in CHP
for an architecture of B bits and /N neurons, and implement
a prototype for a 32-bit system with 3 neurons, corresponding
to one of the examples provided by Tang et al. [4]. The CHP
description of the design was converted into production rules
to enable its implementation using asynchronous circuits with
the ACT language tools. After verifying these production rules

our variables in the following way:

v (t+1) =72, (12)
Vin =7 Vi, (13)
po=r""p, (14)
N =7171), (15)
ng =7 1w, (16)
7" = —logy(T), 17

pi(0) = 7710, (18)

Using this change of variables, the equations (9)-(11) can
be implemented without multiplication or division, thus con-
siderably simplifying the design. The rearranged equations are
shown below:

vl (t+1) = o () + (i (t) = X), (19)
vl (t+1) >V = ol (t+1) « 0;a;(t+1) =1,

(20)

vl (t+1) <V = ai(t +1) =0, 1)
pi(t+1) = pi(t) + bi—(pa(t) >> 77) = Tjzawi;a;(t + 1),

(22)

aj(t) =1= ﬂi(t + 1) = /iz(t) — Wiy, (23)
)= Vin

Vi
a;(t) = 1A pi(t) < %‘ = it +1) =2

i (0) =771,

; (24)
(25)

With equations 19-25 being implemented on each neuron,
we created a central unit that distributed global constants and
spike information to all of the neurons. This reduced the
number of channels required from O(n?) in an architecture
where every neuron is connected to O(n) channels.

The global constants loaded onto the chip go through
an Arduino interface and upload X, 7*, V], respectively.
Once these global constants are sent from the control unit
to every neuron, then b; and w,;; are read and sent to
the neurons. All of these values were generated using
/scripts/EENG_426_S_LCA_I_O.ipynb.

We created three separate implementations of the asyn-
chronous spiking neural network to solve the LASSO problem:
CHP, CHP with additional positive offset, and dataflow.

A. CHP and CHP with Offset

In the regular CHP implementation, we have a control
unit with N neurons. The control unit has an input channel
connected to off-chip to receive the weights, and an output
channel connected to off-chip to tell first which neuron spiked,
and at what time step that neuron spiked.

Central Unit

13

Neurons

Fig. 1. Tllustration of the central unit and neurons for the 32 bits, 3 neurons
implementation. As shown in the image, each neuron connects to the central
unit via two channels. Channels between neurons not shown on the image.

The control unit then has one 1-bit input (neuron to control)
and one 32-bit output (control to neuron) channel per neuron.
The global constants and global spike information are sent
through the control-to-neuron channel. The neuron-to-control
channels are 1-bit to tell the control unit whether the neuron
has spiked or not.

In each neuron, spikes are calculated according to equations
19-25. In the CHP with additional offset, equations 19, 20, 22,
24, 25 respectively become

v (t+1) = o] (t) = 2°1 4 (pi(t) = X),

(26)

V1) >V =0l (1) 230t 1) =1, @27)
it +1) = bt +1) + (23 >> 1)

(28)

aj(t) =1 /\,ui(t) < % = W = (1 + 3 * 232 — 2Vth)7
(29)

wi(0) = 77 1b; 4 2% (30)

B. Dataflow

We used the dataflow sublanguage to create various
dataflow components, which were in turn combined to build
the LCA. There are 14 of these components in total.

Component Summaries:

const

The const process generates a constant output stream on
channel Y by initially routing the input channel A through
internal control channels, then sends 1 forever. A control signal
ensures proper handshaking and propagation.

min, max, smax

These processes compute the minimum and maximum value
between two inputs A and B using splits.

count components

The count, count_to, count_to_3 process generates
a sequence of incrementing integers (0,1,2,...) and outputs
them continuously on channel Y. count_to counts until
a pint Q, and count_to_3 counts to 3. The counter is
implemented using internal addition, feedback loops, splits,
and merges.

count_loop

The count_loop process generates a repeating sequence
of integers (0, 1, ..., Q). Once the counter reaches Q, it resets
back to 0 and continues.

count_loop_1

The count_loop_1 process is an optimized version of
count_loop for a single-bit counter using less dataflow
components.

count_repeat

The count_repeat process generates a sequence where
each integer = € {0, 1} is repeated R times before increment-
ing.

count_repeat_to

The count_repeat_to process outputs a sequence
where each integer is repeated R times. Once the counter
reaches a specified maximum value Q, the value Q is output
repeatedly.

neuron_connector

The neuron_connector process routes a predefined
series of inputs (lambda, tau, Vth, and const) to the
output channel out. After this sequence, the input j is
repeatedly sent to the output indefinitely. Merges and control
signals determine the order of routing.

n_copy
The n_copy process takes a single input and sequentially
copies it to N output channels using a loop counter.

splitter

The splitter process serializes an N-bit input into M-
bit chunks and outputs them one at a time, starting with
the least significant chunk. This process assumes that N is
a multiple of M. A loop counter and right shifts manage the
serialization. This component is needed because the Arduino
micro-controller (which we are using to send values to the
chip) has 16 bit outputs, while our architecture runs on 32 bit.

merger

The merger process reconstructs a larger M-bit output from
multiple N-bit inputs, where M is a multiple of N. It performs
concatenation and accumulation on the smaller chunks. This
component is needed because the Arduino micro-controller
(which we are using to send values to the chip) has 16 bit
outputs, while our architecture runs on 32 bit.

III. OFF CHIP IMPLEMENTATION
ARDUINO CODE SUMMARY

The chip is designed to interface with an Arduino, which
manages the four-phase handshake and communication pro-
cess. On the user side, a Python program allows the user to
input data, run computations, and generate bit strings that the
Arduino transmits to the chip. The Arduino then synchronizes
the chip’s output and sends it bit-by-bit to the Python program,
which subsequently extracts the timestamp and neuron that
spiked.

The user interacts with the chip through a Python interface,
where they enter 7,@,‘/}h,)\p, and 7* = —log, 7. Note
that all of the inputs are integers. Also note that offset is
internally set to 23! due to it being exactly halfway- this allows
“negative” and “’positive” numbers to be represented within the
circuit. N

The Python code then computes b = 7 e ®(assuming v
is a horizontal matrix) and W = ® e ®T'. It then converts all
quantities to 32-bit binary strings (MSB first) and sends these
to the Arduino. At this point, the Python waits for further
communication from the Arduino, and becomes passive.

The Arduino code is structured into three main stages:
reading data from Python (the stage just discussed), sending
data to the chip, and reading data from the chip.

In the second stage, the Arduino then sends these values to
the chip 16 bits at a time, internally breaking up the 32-bit
quantities, and subsequently enters the third (and final phase).
Once the chip enters the run phase, whenever a neuron spikes,
the chip outputs a time-stamp and then the neuron id (with the
chip breaking up the 32-bit quantities into 16-bit chunks). The
Arduino reads these via the parallel-to-serial shift registers and
serially sends these bits to the Python code for processing. On
the user end, the Python stops updating after a user-defined
number of spikes is recorded.

Pin Configuration
The following pins are initialized for communication:

e dataOutPin (Pin 13): Serial data output to the chip.

e latchPin (Pin 12): Register latch pin.

e clockPin (Pin 11): Shift register clock pin.

e SH (Pin 8): Shift control pin.

e outCLK (Pin 7): Output clock pin.

e datafromChip (Pin 6): Data input from the chip.

e toChipReq (Pin 10): Request line to the chip.

e toChipAck (Pin 3): Acknowledgment pin from the chip
(for sending input to the chip- sent from chip).

e« fromChipReq (Pin 2): Request line from the chip.

e fromChipAck (Pin 4): Acknowledgment pin to the chip
(for receiving output data from chip- sent from Arduino).

Variables and States

Several variables are defined to store input data, process
states, and chip communication status. The variables include
arrays for different neuron parameters, such as tauStar,
lambdaP, vth, b, and w. The code uses flags to track

the current process state and handle data reading or writing
operations.

Setup

The setup () function initializes serial communication,
configures pin modes, and attaches interrupts for handling
acknowledgment signals (for input into the chip) and data send
requests (for output) from the chip.

Data Communication Functions

o sendDataToChip: This function sends 16 bits of data to
the chip, either in MSB-first or LSB-first order, depending
on the msb_first flag. It uses the shiftOut function
to transfer the data bit by bit to the chip.

o handleAck: This interrupt service routine handles ac-
knowledgment signals from the chip. It updates the
ackReceived flag and manages the request lines for
data transfer.

o load_data_from_chip: This interrupt service routine is
called when the chip requests to send data. It samples
bits from the chip 16 at a time and shifts them out to the
Arduino.

Loop Function

The loop () function manages the different process states:

o State 0 (Read from Python): The Arduino reads data
from the serial input, including variable names and val-
ues, and stores them in the corresponding arrays. Upon
receiving the "Done” signal, it transitions to state 1.

o State 1 (Send Data to Chip): The Arduino sends data to
the chip in 16-bit chunks. It sends values such as 7*,)\,
and neuron parameters. The data is sent in the specified
bit order (MSB or LSB first).

o State 2 (Read from Chip): When the Arduino
receives data from the chip, it triggers the
load_data_from_chip function, which reads
and shifts out the bits from the chip.

Interrupt Handling

Interrupts are used to manage the acknowledgment signals
from the chip (toChipAck) and the request signals from
the chip (fromChipReq). These interrupts help coordinate
data transfer between the (synchronous) Arduino and the
(asynchronous) chip.

Circuitry setup

Note that the circuit uses 3.3V logic in order to be compat-
ible with the chip, Arduino, and the shift registers, without
the need for logic converters. Both Arduino and the shift
registers are relatively flexible, but the chip (being TSMC
180nm technology) cannot operate at a more typical 5V.

Parallelin Serial Out

K

SHID Ve
CLK CLKINH 1
E r

ai
UE ;

Ve _J_
Q]

C

RCLK +—]

A
SER
Qu—

Q
PES
E}

‘ONN ONIN@AV

S9IDHFXNS

|

|

|

I

I
Qi SRCLR —1— L

dpy) oyuy ynduy

SHID Ve |

CLK CLKINH
[

P r

F C

G E

Qu

dyq) woag mding

vl
Q

SER -

oF WDz — — —
|
|
[

6SOHPINS

RCLK
9 SRCLK D4
Q, SRCLR T— 3V
GND Q

._..._::rw &=
t
i
=0tt
g g
1

LOLLRL

SIIDHPINS
»

Asynchronous input pins bolded, D3 with I_
internal pullup, D2 with external pulldown

Fig. 2. Circuitry implementation for the chip (tan boxes). The specific serial-
in parallel-out and parallel-in serial-out shift registers listed are shown as
examples of commonly used parts that would be compatible with the chip-
any other shift registers with similar internal logic and compatibility at 3.3V
logic would suffice. Pins D3 and D2 are used for asynchronous input as these
are the only pins on the Arduino Uno able to implement interrupts.

IV. VERIFICATION

We carried out testing at various stages of development to
ensure that the SNN implementation matched the expected
results from the referenced paper [4] (shown in Figure 2).
This involved simulations and tests for the three different
implementations—Python, CHP and CHP with offset, and
Dataflow. For the ACT specific implemetations, we also con-
ducted testing for their respective production rules outputs.
Neuron 3 ———

Neuron 1 Neuron 2

Vi

Potential
o
\\
N

Current
= O = N

0 2 4 6 8 10 12
SNN time

2 01

§ 02

2

3 03 + t + t t + t

=4 1 1 Il 1 L |
0 2 4 6 8 10 12

Fig. 3. Results from the 3 neuron, 32 bit implementation of the SNN in the
paper by Tang et al., [4]

A. Jupyter Notebook Initial Validation

The initial implementation was done in Python as a baseline.
This version of the spiking locally competitive algorithm (S-
LCA) enabled us to simulate the behavior of the neurons
precisely, observing all aspects of the dynamics:

« Spike timing a;(t),

o Membrane potentials v/ (t),

o Current dynamics (i} (t).

Python’s implementation served as the gold standard be-
cause of its transparency and ability to simulate continuous
behavior. As shown below, the results matched the ones
published by Tang et al., [4]

Simulation Results

Voltages
1.0 { —==a=—F= —=pe==r=p==39=r=
— NO
0.5 4 N1
— N2
0'0 +770 Wh T T T IA T AI T
0 200 400 600 800 1000 1200 1400 1600
Currents
=
H = A AT
o N1
— N2
-1 T T T T T T T T
0 200 400 600 800 1000 1200 1400 1600
Spikes
4
[=
e24 + + + + + + + + + + + + + + A
]
04 + + + + + + + + +
T T T T T T T T
0 200 400 600 800 1000 1200 1400 1600
Timestep

Fig. 4. Implementation of the three-neuron spiking neural network in Python.
This simulation allowed us to observe all relevant aspects of the neural
dynamics.

B. CHP Verification

The CHP implementation was tested using the ACT toolkit
with actsim. A structured testing methodology was fol-

lowed:

1 !
*,Vj,and Wi,

« Inputs: Precomputed values for ', 7
erated using Python scripts.

o Outputs: Spike signals and neuron states were logged and
compared with the Python results and reference outputs

from Figure 2.

gen-

We designed the CHP (and chip in general) so that it only
sends out time step and spikes so the results only show the
spikes based on the time step for each neuron. As shown
below, the results obtained for the CHP level testing matched
those of the Python implementation and [4].

We decomposed the CHP with the decomp tool from
synth2 and obtained the same results as the ones we show
above. We then used ring to get a file with the production
rules but when testing the file, the results did not match that
of the CHP or decomp levels. An interesting observation from
the testing of the production rules file was that the first four
values did match those of CHP and decomp but after that the
values diverged. From this point, we parallelized our efforts
to get to a working production rules file we could use for the
next steps for the tape out. We attempted to re-implement the
project with dataflow (results discussed in the next section) and
re-write the CHP with an offset to avoid negative values as
those might have been causing the problem. The overall results
are summarized in the table in the Results and Comparison
section.

Logged Spikes

Neuron

T T T T T T T T
0 200 400 600 800 1000 1200 1400 1600

Timestep

Fig. 5. Number of neuron that spiked at specific time points in the CHP test.
The results match that of the paper by Tang et. al. in Fig. 3 and 4

C. Dataflow Verification

The dataflow implementation was tested using a structured
methodology similar to the CHP verification. Testing was
carried out at multiple levels:

e test_neuron: Simulated individual neuron behavior
using predefined spike trains and weight configurations.

e test_control: Handled the routing of global con-
stants and parameters to neurons.

e test_chip: Integrated full system testing, including
I/O interfaces and communication channels.

Inputs were initialized through dedicated data channels
while outputs—spike signals and timestep information were
routed and verified. The results obtained demonstrated correct
communication and behavior of the neurons in the dataflow
architecture.

D. Results and Comparison

Below we have summarized the main results from our
multiple efforts to implement the SNN with asynchronous
circuits (and the Python standard).

TABLE I
SUMMARY OF TESTING RESULTS

Implementation | Testing Level | Result
CHP CHP Correct

Decomp Correct

Prs Incorrect values after 4th value
CHP with Offset | CHP Correct

Decomp Correct

Prs Incorrect values
Dataflow Dataflow Correct

Prs No outputs
Python N/A Correct

2Correct: All outputs match expected results.
PIncorrect values after 4th value: Deviation starts after the 4th output.
“Incorrect values: Results do not match expected outputs.

For some reason we are still figuring out why our imple-
mentations keep failing at the production rules level. This has
been very puzzling as we have tried significantly different
approaches related to implementing the SNN and all of the
approaches work at the higher level of abstraction. We know
that the problem lies in the translation of such abstraction into
low level rules but do not know whether the bug or bugs lie
primarily on our design or the way such design is translated
(or both). As a result, we have tried to iterate on our designs
as well as to reach out to Karthi and Professor Manohar so
they can look at the ACT-related tools on their end. Our
hypothesis at the moment of submission is that reading in
multiple values from a single channel leads to problems with
the ring synthesis. For the CHP implementation specifically,
we believe there is some sort of overflow happening on neuron
1 as it keeps spiking every time step after time step 361, so
fixing this issue will fix the circuit.

A general summary of the tools used to translate our design
into production rules is shown below:

TABLE 1T
SUMMARY OF TOOLS USED TO COMPILE DESIGNS

Implementation | ACT Tool
CHP decomp

ring
CHP with Offset | decomp

ring
Dataflow dflowmap

V. SYNTHESIS AND NEXT STEPS

We used ring synthesis to generate production rules with
CHP [6]. For dataflow, we used dflowmap and netlist gen-
eration. Unfortunately at the time of submission, the prs for
CHP, CHP with offset, and dataflow did not work as their
implementations at a higher level of abstraction. We will figure
out why this is the case before the tapeout deadline. Once there
is a set of prs that work with either dataflow or CHP, we will
implement the rect files with routing friendly cell layout.

BUGS IDENTIFIED IN ACT TOOLS

During our testing and analysis of the maelstrom, ring,
and dflowmap functions, we identified several issues that
required attention. These bugs, along with their descriptions
and status of their resolutions, are outlined below:

1) Non-Exclusive Guards in the decomp Function: We
identified an error in the decomp function of Maelstrom
where multiple guards were generated with the same
conditions but produced separate outputs. This behavior
was incorrect, as the guards are intended to be mutually
exclusive. This led to failures when trying to run ring
on the decomp output. Karthi was able to resolve this
issue and fix it.

2) Handling of Internal Loops: The Maelstrom tool
encountered issues when parsing internal loops. Specif-
ically, it failed to process them correctly, leading to

improper behavior. Sometimes this caused problems in
running ring on the decomp output and other times
while ring was able to execute, the output of running
the code was different. Karthi identified the root cause
and implemented a fix to address this problem.

3) Handling of Negative Numbers: As CHP also does not
handle negative integers, we decided to implement a sys-
tem where the bits would get added and subtracted nor-
mally, and we would use our own comparator (instead of
< or >) to compare the values using two’s compliment.
While this worked on the CHP and decomp level, it did
not work with ring. The ring had problems related
to bitwidth and other issues which made us need to
implement the offset.

4) Variable Initialization in Maelstrom: When trying to
convert our CHP to PRS, the decomp would output a
file that needed to be edited before it could be used for
ring to ensure that every variable is initialized before it
is used in a function, and that every initialization is done
with a constant instead of making it equal to another
variable. While this is an easy fix, it disrupts the flow
of the process and takes a significant amount of time
when it can be added to the automation. Furthermore,
we assumed that every variable that was not already
initialized was supposed to be set to 0, yet this might
also be a reason for our incorrect outputs. Karthi let us
know that he is aware of the issue and is working on a
fix.

5) Segmentation Fault on Left Shift Operation: We
(accidentally) discovered that performing a left shift
operation (<<<) by 232 bits caused a segmentation
fault. This issue was reported to Karthi for further
investigation and resolution.

6) Incorrect Behavior from ring and dflowmap PRS
QOutputs: As noted earlier, we were able to obtain
the intended outputs when testing the CHP-level code,
as well as the code processed through Maelstrom’s
decomp function. However, when running Maelstrom’s
ring function, the PRS generated by it gave incorrect
outputs when we ran actsim. Similarly, while dataflow
tested successfully and produced correct results, using
dflowmap to convert dataflow to PRS resulted incor-
rect outputs. At this stage, it is unclear whether the issue
lies in our code or in the Maelstrom and dflowmap
commands. Further investigation is required to pinpoint
and resolve the problem.

ACKNOWLEDGMENT

We sincerely thank Congyang Li for guiding us at the outset
by recommending key papers to read. We are also deeply
grateful to Karthi Srinivasan for invaluable assistance with
debugging circuit decomposition, PRS production, and CHP
compilation. Our gratitude extends to Professor Rajit Manohar
for teaching us the theory in class and for his guidance on
dataflow and other issues during office hours. Lastly, we thank
Matt Dobre for sharing his final versions of the routed cells.

[1]
[2]

[3]

[4]

[5]

[6]

REFERENCES

M. Davies et. al., “Loihi: A Neuromorphic Manycore Processor with
On-Chip Learning,” in IEEE Micro, vol. 38, no. 1, January 2018.

S. Shapero, C. Rozell, P. Hasler, “Configurable hardware integrate and
fire neurons for sparse approximation”, in Neural Networks, vol. 45, pp.
134-143, September 2013.

M. Davies, et al., "Advancing neuromorphic computing with loihi: A
survey of results and outlook.” in Proceedings of the IEEE, vol. 109,
no. 5, pp. 911-934. 2021.

P. T. P. Tang, T. H. Lin, M. Davies, ”Sparse coding by spiking neural
networks: Convergence theory and computational results.” arXiv preprint
arXiv:1705.05475 (2017).

K. L. Fair, D. R. Mendat, A. G. Andreou, C. J. Rozell, J. Romberg, D.
V. Anderson,“Sparse Coding Using the Locally Competitive Algorithm
on the TrueNorth Neurosynaptic System,” in Frontiers in neuroscience,
vol. 13, 754. https://doi.org/10.3389/fnins.2019.00754

K. Srinivasan and R. Manohar, “Maelstrom: A Logic Synthesis Tech-
nique for Asynchronous Circuits,” unpublished manuscript, submitted
for publication, 2024.

